Hydrothermal Minerals Record

CO$_2$ Partial Pressures in the Reykjanes Geothermal System, Iceland

Adam J.E. Freedman
Stanford University
WGC - April 30, 2010

Co-Authors: Dennis K. Bird, Stefán Arnórsson, Thráinn Fridriksson, Wilfred A. Elders, Gudmundur Ó. Fríðleifsson
Presentation Overview

• Introduction
• Mineral Assemblage
• Thermodynamic Considerations
• Analytical Methods
• Calculated Results
• Conclusions
Introduction

• Premise:
 - Magmatic CO$_2$ from the mantle released at MAR
 - Seawater penetrates coastal Reykjanes Geothermal System (RGS), reacts with CO$_2$ & basaltic host rock, forming secondary hydrothermal minerals
 - Under specified conditions, the geothermal fluid P_{CO_2} may be calculated as a function of the composition of hydrothermal minerals: epidote & prehnite
 - *Using thermodynamics, mineralogy may record the evolutionary history of CO$_2$ in the geothermal system*
Reykjanes Geothermal System

- High-T geothermal system distribution
- Reykjanes system in SW Iceland where MAR diverges
Mineral Alteration Zones

Assemblage: Epidote-Prehnite-Calcite-Qtz

RN-9, RN-10, RN-17
Observed Mineral Assemblage

- At > 250° C (chl-epi & epi-act):
 - Assemblage: epi-preh-cc-qtz
 - **Epidote** observed in abundance
 - **Zoning Trend**: Fe-rich cores, Al-rich rims
 - **Extreme Fe content**: observed nowhere else in world
Mineral Chemistry

Within RGS **epidote and prehnite** both display compositions with varying degrees of Al and Fe(III) substitution.

Epidote: $\text{Ca}_2\text{Fe}_x\text{Al}_{3-x}\text{Si}_3\text{O}_{12}(\text{OH}), \ x = n_{\text{Fe(III)}}$ substituted for Al

Solid solution end-members: **clinozoisite**: $\text{Ca}_2\text{Al}_3\text{Si}_3\text{O}_{12}(\text{OH})$; **epidote**: $\text{Ca}_2\text{Al}_2\text{FeSi}_3\text{O}_{12}(\text{OH})$; **pistacite**: $\text{Ca}_2\text{Fe}_3\text{Si}_3\text{O}_{12}(\text{OH})$

$x_{ps} = n_{\text{Fe}}/(n_{\text{Fe}} + n_{\text{Al}})$, n_{Fe} and n_{Al} # atoms per formula unit, % Fe(III) in sites

Prehnite: $\text{Ca}_2\text{Al}_{1-x}\text{Fe}_x(\text{AlSi}_3\text{O}_{10})(\text{OH})_2$, $x = n_{\text{Fe(III)}} = X_{\text{Fe,Preh}}$, #atoms Fe(III) substituted for Al
Mineral Assemblage

\[\text{Ca}_2\text{Al}_3\text{Si}_3\text{O}_{12}(\text{OH}) + \text{CaCO}_3 + 1.5 \text{SiO}_2 + \text{H}_2\text{O} = 1.5 \text{Ca}_2\text{Al}_2\text{Si}_3\text{O}_{10}(\text{OH})_2 + \text{CO}_2 \]

Clinozoisite *Calcite* *Quartz* *Prehnite*
Mineral Assemblage

\[Ca_2Al_3Si_3O_{12}(OH) + CaCO_3 + 1.5 \text{SiO}_2 + H_2O = 1.5 Ca_2Al_2Si_3O_{10}(OH)_2 + CO_2 \]

Clinozoisite *Calcite* *Quartz* *Prehnite*

Equilibrium Constant Reaction:

\[\log P_{CO_2} = \log K_{T,P} + \log a_{\text{Czo}} - 1.5 \log a_{\text{Preh}} + \log a_{H_2O} \]
Mineral Assemblage

\[
\text{Ca}_2\text{Al}_3\text{Si}_3\text{O}_{12}\text{(OH)} + \text{CaCO}_3 + 1.5 \text{SiO}_2 + \text{H}_2\text{O} = 1.5 \text{Ca}_2\text{Al}_2\text{Si}_3\text{O}_{10}\text{(OH)}_2 + \text{CO}_2
\]

Clinozoisite Calcite Quartz Prehnite

Equilibrium Constant Reaction:

\[
\log P_{\text{CO}_2} = \log K_{T,P} + \log a_{\text{Czo}} - 1.5 \log a_{\text{Preh}} + \log a_{\text{H}_2\text{O}}
\]

If: K, chemical composition (activity) of epidote and prehnite

Then: May calculate fluid \(P_{\text{CO}_2} \) that formed minerals
Phase Rule Constraints

\[f = c + 2 - p \]

c: number of chemical components = 7 (NaCl, CaO, Al\(_2\)O\(_3\), Fe\(_2\)O\(_3\), SiO\(_2\), H\(_2\)O, CO\(_2\))
p: number of phases = 5 (calcite, epidote, prehnite, quartz, fluid)
f: variance (independent variables) = 7 + 2 - 5 = 4 (quadra-variant assemblage)

∴ Fix 4 intensive variables (e.g., T, P, \(a_{H2O}\), \(a_{czo}\) and/or \(a_{preh}\)), equilibrium uniquely defined.

- **T & P**: constrained as a function of depth in the drillholes
- **\(a_{H2O}\)**: computed using aqueous species distribution algorithms
- **\(a_{czo}\) and **\(a_{preh}\)**: calculated using chemical composition of samples from drillhole cuttings in RN-9, 10, 17 (use electron microprobe analysis)

\[\log P_{CO2} = \log K_{T,P} + \log a_{Czo} - 1.5 \log a_{Preh} + \log a_{H2O} \]
Evaluation of Local Equilibrium

Before continuing the investigation, it is important to evaluate the extent to which the *in situ* hydrothermal fluids are in equilibrium with the mineral assemblage...

Thermodynamic activities of aqueous species for geothermal fluids collected at the wellhead (l + s) derived using computer programs (SOLVEQ, WATCH).

<table>
<thead>
<tr>
<th>Well #</th>
<th>RN-19</th>
<th>RN-21</th>
<th>RN-12</th>
<th>RN-23</th>
<th>RN-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (ºC)</td>
<td>275</td>
<td>285</td>
<td>295</td>
<td>300</td>
<td>310</td>
</tr>
<tr>
<td>pH</td>
<td>5.41</td>
<td>5.32</td>
<td>5.39</td>
<td>5.23</td>
<td>5.33</td>
</tr>
<tr>
<td>SiO$_2$(aq)</td>
<td>9.75 × 10$^{-3}$</td>
<td>1.11 × 10$^{-2}$</td>
<td>1.08 × 10$^{-2}$</td>
<td>1.20 × 10$^{-2}$</td>
<td>1.24 × 10$^{-2}$</td>
</tr>
<tr>
<td>Al$^{3+}$</td>
<td>1.76 × 10$^{-6}$</td>
<td>2.08 × 10$^{-6}$</td>
<td>1.92 × 10$^{-6}$</td>
<td>2.98 × 10$^{-6}$</td>
<td>1.13 × 10$^{-6}$</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>4.14 × 10$^{-2}$</td>
<td>4.00 × 10$^{-2}$</td>
<td>4.01 × 10$^{-2}$</td>
<td>4.08 × 10$^{-2}$</td>
<td>3.84 × 10$^{-2}$</td>
</tr>
<tr>
<td>Fe$_T$</td>
<td>7.96 × 10$^{-6}$</td>
<td>9.05 × 10$^{-6}$</td>
<td>8.63 × 10$^{-6}$</td>
<td>1.30 × 10$^{-5}$</td>
<td>3.50 × 10$^{-5}$</td>
</tr>
<tr>
<td>a_{H_2O}</td>
<td>0.984</td>
<td>0.985</td>
<td>0.986</td>
<td>0.985</td>
<td>0.986</td>
</tr>
<tr>
<td>P_{CO_2} (bar)</td>
<td>1.41</td>
<td>1.50</td>
<td>2.42</td>
<td>1.54</td>
<td>2.34</td>
</tr>
</tbody>
</table>

All concentrations reported in mol/kg solution
Evaluation of Local Equilibrium

Before continuing the investigation, it is important to evaluate the extent to which the in situ hydrothermal fluids are in equilibrium with the mineral assemblage...

Thermodynamic activities of aqueous species for geothermal fluids collected at the wellhead (l + s) derived using computer programs (SOLVEQ, WATCH).

Quartz Solubility Reaction:
\[\text{SiO}_2,\text{Quartz} \leftrightarrow \text{SiO}_2,\text{aq} \]
Evaluation of Local Equilibrium

Calcite Hydrolysis Rxn:

\[
\text{CaCO}_3 + 2\text{H}^+ \rightleftharpoons \text{Ca}^{2+} + \text{H}_2\text{O} + \text{CO}_2,_{\text{g}}
\]

In EQ (within upper limits of assumed uncertainty)

Czo Hydrolysis Rxn:

\[
\text{Ca}_2\text{Al}_3\text{Si}_3\text{O}_{12}\text{OH} + 13\text{H}^+ \rightleftharpoons 2\text{Ca}^{2+} + 3\text{Al}^{3+} + 3\text{SiO}_{2,\text{aq}} + 7\text{H}_2\text{O}
\]

In Equilibrium

Preh Hydrolysis Rxn:

\[
\text{Ca}_2\text{Al}_2\text{Si}_3\text{O}_{10}(\text{OH})_2 + 10\text{H}^+ \rightleftharpoons 2\text{Ca}^{2+} + 2\text{Al}^{3+} + 3\text{SiO}_{2,\text{aq}} + 6\text{H}_2\text{O}
\]

In Equilibrium
Electron microprobe used to determine mineral chemistry (JEOL 733A, 15 kV accelerating potential, 15 nA beam current)

General trend of RGS: epidote crystals Fe(III)-rich cores and Al-rich rims, occasional oscillatory zoning
Compositional Results

Epidote X_{ps} Range:
- RN-9: 0.19-0.44
- RN-10: 0.18-0.48
- RN-17: 0.17-0.46

Prehnite X_{Fe} Range:
- RN-17: 0.13-0.59

- Demonstrate extreme range of Fe(III)-Al substitution similar to RGS epidotes.
- Scarce, small grain size (~20 µm), few samples
Prehnite Composition

- Sigmoidal regression fit to data set of coexisting epidote and prehnite compositions from active geothermal systems

- Compositional constraints on regression:
 - $X_{ps} = 0$ coexists with $X_{Fe,Prehnite} = 0$
 - $X_{ps} = 0.36$ coexists with $X_{Fe,Preh} = 0.60$ (Fe(III)-richest epidote found in cuttings where prehnite also found)

Can calculate $X_{Fe,Prehnite}$ values for every epidote analysis ($X_{ps} < 0.36$)

Trends:

- Calculated & measured prehnite compositions range from $X_{Fe,preh} = 0.05$ to 0.6.
- Calculated & measured compositional range very similar, confident in method
Thermodynamic Considerations

\[
\log P_{CO2} = \log K_{T,P} + \log a_{Czo} - 1.5 \log a_{Preh} + \log a_{H2O}
\]

\[a_{H2O} = 0.985 \text{ (SOLVEQ)}\]

\[a_{Preh} = X_{Al,Prehnite} = 1 - X_{Fe,Prehnite} = 1 - \text{sigmoid regression} = 1 - \left(0.9903/(1 + \exp(-(X_{ps} - 0.3321)/0.0641))\right)\]

\[a_{Czo} = X_{Al,M1} \cdot X_{Al,M3}\]

Determined the distribution of Al (and Fe(III)) in crystallographic sites using measured \(n_{Fe}, n_{Al}\) and a solid solution T-dependent substitution order-disorder model (Bird and Helgeson, 1980)

\[\log K = 57.781 - 22843/T^2 - 4792.99/T + 0.00829T + 0.6864 \times 10^{-6} T^2 - 19.302 \log T\]

Calculated using T-dependent algorithm (Arnorsson et al., 2007)
Calculated P_{CO2}

$$\log P_{CO2} = \log K_{T,P} + \log a_{Czo} - 1.5 \log a_{Preh} + \log a_{H2O}$$

Trends:

- At $\leftrightarrow T$, P_{CO2} \uparrow with $\downarrow X_{ps}$
- At $\leftrightarrow X_{ps}$, P_{CO2} \uparrow with $\uparrow T$
 (but to a lesser degree with $\uparrow Fe(III)$ content in epidote)
Calculated P_{CO2}

\[\log P_{CO2} = \log K_{T,P} + \log a_{Czo} - 1.5 \log a_{Preh} + \log a_{H2O} \]

Comparison with *in situ* fluid compositions

Composition of reservoir liquid derived from speciation analyses of liquid & steam samples collected at the wellhead (275-310° C)

In situ Values:
- 1.4 - 4.0 bars

Calculated:
- 0.57 to 6.17 bars (Assemblage)
- 1.32 to 6.81 bars (Non-Assemblage)
Comparison with in situ fluid compositions

Composition of reservoir liquid derived from speciation analyses of liquid & steam samples collected at the wellhead (275-310°C)

In situ Values:
- 1.4 - 4.0 bars

Calculated:
- 0.57 to 6.17 bars (Assemblage)
- 1.32 to 6.81 bars (Non-Assemb.)
If RGS core-rims formed under assemblage equilibrium conditions:

- @ ⇔ T, requires ↑ P_{CO2} with time (rise in CO$_2$ content may record ↑ in # intrusions of dikes/sills and their magmatic degassing during evolution of Reykjanes GS)
- @ ⇔ P_{CO2}, requires ↓ T with time (spatial or temporal changes to system)

Calculated P_{CO2}

\[
\log P_{CO2} = \log K_{T,P} + \log a_{Czo} - 1.5 \log a_{Preh} + \log a_{H2O}
\]
Agreement Trends

Assemblage

Cuttings at depths where assemblage observed:
- 143 epidote analyses
- **72%** of the computed values of \(P_{\text{CO}_2} \) (0.57 to 6.17 bars) are within \(P_{\text{CO}_2} \) range of collected formation fluids (1.3 to 4.0 bars);

Non-Assemblage

Cuttings at depths where assem. NOT observed:
- Prehnite and/or calcite missing
- 124 epidote analyses
- **58%** of the computed values of \(P_{\text{CO}_2} \) (1.3 to 6.8 bars) are within \(P_{\text{CO}_2} \) range of collected formation fluids (1.3 to 4.0 bars)
Conclusions

• Method for calculating fluid P_{CO_2} proven quite reliable (72%) when all four index minerals of epidote-prehnite-calcite-quartz assemblage present.

• If only epidote, prehnite and quartz are observed, our method appears to serve as a moderately accurate (58%) predictive proxy for fluid P_{CO_2} values in the RGS.

• Strong agreement between sampled and predicted fluid compositions provides insight into future abilities to characterize:
 - P_{CO_2} in active and fossil hydrothermal and low-grade metamorphic environments in mafic lithologies
 - The nature of reactions that involve natural sequestration of CO_2 derived from magmatic degassing
 - The nature of reactions that involved injection of industrial CO_2-rich fluids within hydrothermal environments in basaltic rocks.
Conclusions

• **Method for calculating fluid P_{CO_2} proven quite reliable (72%)** when all four index minerals of epidote-prehnite-calcite-quartz assemblage present.

• If only epidote, prehnite and quartz are observed, our **method appears to serve as a moderately accurate (58%)** predictive proxy for fluid P_{CO_2} values in the RGS.

• **Strong agreement between sampled and predicted fluid compositions** provides insight into future abilities to characterize:
 • P_{CO_2} in **active and fossil hydrothermal** and low-grade metamorphic environments in mafic lithologies
 • The nature of reactions that involve **natural sequestration** of CO_2 derived from magmatic degassing
 • The nature of reactions that involved **injection of industrial** CO_2-rich fluids within hydrothermal environments in basaltic rocks.

Thermodynamics reveals that mineralogy records the evolutionary history of CO_2 in the geothermal system
Thank You

Questions?